▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Dualities and representations of Hecke algebras for interacting particle systems

Roger Tribe, Bruce Westbury and Oleg Zaboronski

Department of Mathematics, University of Warwick

July 09, 2020

(ロ) (四) (主) (主) (主) (つ) (○)

1 Introduction

2 Algebra

Outline	Introduction	Algebra
o	●000	0000
How it all started		

• Idea (**Smoluchowski, 1907**): use Boltzmann theory to study chemical kinetics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Outline	Introduction	Algebra
o	•000	0000
How it all started		

• Idea (**Smoluchowski, 1907**): use Boltzmann theory to study chemical kinetics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

• The simplest models: • $A + A \rightarrow \emptyset$ (annihilation) • $A + A \rightarrow A$ (coalescence)

Outline	Introduction	Algebra
o	•000	0000
How it all started		

• Idea (**Smoluchowski, 1907**): use Boltzmann theory to study chemical kinetics

• The simplest models: • $A + A \rightarrow \emptyset$ (annihilation) • $A + A \rightarrow A$ (coalescence)

• Experimental realisation (2000's): localised excitations in nanowires

(日)

Outline	Introduction	Algebra
o	⊙●○○	0000
Moon field analysis		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Mean field analysis

• ρ_t - density of reactants

	Introduction o●oo	Algebra 0000
lean field analysis		

- ρ_t density of reactants
- Rate equation:

 $\frac{1}{2}\rho_t^2$ $\dot{\rho}_t = - \lambda$ \times Reaction rate Number of reacting pairs in unit volume

▲□▶▲□▶▲□▶▲□▶ □ ● ●

	Introduction ○●○○	Algebra 0000
Vlean field analysis		

- ρ_t density of reactants
- Rate equation:

$$\dot{\rho}_{t} = -\underbrace{\lambda}_{Reaction \ rate} \times \underbrace{\frac{1}{2}\rho_{t}^{2}}_{Number \ of \ reacting \ pairs \ in \ unit \ volume}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

• Large-*t* asymptotic: $\rho_t = \frac{2}{\lambda t} (1 + O(t^{-1}))$

Outline	Introduction 0●00	Algebra 0000
Mean field analysis		

- ρ_t density of reactants
- Rate equation:

- Large-*t* asymptotic: $\rho_t = \frac{2}{\lambda t} (1 + O(t^{-1}))$
- Implicit mean field assumption: absence of spatial correlations

- ρ_t density of reactants
- Rate equation:

- Large-t asymptotic: $\rho_t = \frac{2}{\lambda t} (1 + O(t^{-1}))$
- Implicit mean field assumption: absence of spatial correlations
- So, the probability of finding particles at *n* disjoint positions is

$$\rho_t^n \stackrel{t \to \infty}{\sim} t^{-n}$$

Introduction 0000 Algebra 0000

Annihilating Random Walks

• Particles perform independent CT RW's on $\mathbb Z$ until they meet

イロト イヨト イヨト イヨト

э

Introduction

Algebra 0000

Annihilating Random Walks

- Particles perform independent CT RW's on $\mathbb Z$ until they meet
- At the moment of collision particles instantly annihilate.

イロト イポト イヨト イヨト

Introduction 0000 Algebra 0000

Annihilating Random Walks

- Particles perform independent CT RW's on $\mathbb Z$ until they meet
- At the moment of collision particles instantly annihilate.
- Correlation functions:

 $\rho_t^{(n)}(x_1,\ldots,x_n)$

- the probability of finding particles at x_1, \ldots, x_n at time t

イロト イボト イヨト イヨト 二日

Annihilating Random Walks

- Particles perform independent CT RW's on $\mathbb Z$ until they meet
- At the moment of collision particles instantly annihilate.
- Correlation functions:

 $\rho_t^{(n)}(x_1,\ldots,x_n)$

- the probability of finding particles at x_1, \ldots, x_n at time t
- Continuous limit for d = 1 $(x_c = \epsilon x, t_c = \epsilon^2 t)$: annihilating BM's on \mathbb{R}

• **Contributors**: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Zeitak, Hakim, Pasquier, ben Avraham, Masser, Ben-Naim, Krapivsky, Connaughton, R. Rajesh, Warren, R. Sun...

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- **Contributors**: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Zeitak, Hakim, Pasquier, ben Avraham, Masser, Ben-Naim, Krapivsky, Connaughton, R. Rajesh, Warren, R. Sun...
- Connection to spin chains for d = 1: domain walls in the Glauber model at T = 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- **Contributors**: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Zeitak, Hakim, Pasquier, ben Avraham, Masser, Ben-Naim, Krapivsky, Connaughton, R. Rajesh, Warren, R. Sun...
- Connection to spin chains for d = 1: domain walls in the Glauber model at T = 0

Results:

Outline	Introduction	Algebra
o	000●	0000
A bit of history		

- **Contributors**: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi, Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Zeitak, Hakim, Pasquier, ben Avraham, Masser, Ben-Naim, Krapivsky, Connaughton, R. Rajesh, Warren, R. Sun...
- Connection to spin chains for d = 1: domain walls in the Glauber model at T = 0

Results:

- Mean field: $ho_t^{(1)} \sim t^{-1}$ (1907)
- d = 1: $\rho_t^{(1)} \sim t^{-1/2}$ (1980's)
- $d = 1: \rho_t^{(n)} \sim t^{-\frac{n}{2} \frac{n(n-1)}{4}}$ (2011)

•
$$d > 2$$
: $\rho_t^{(1)} \sim t^{-1}$ (1990's)
• $d = 2$: $\rho_t^{(1)} \sim \frac{\log t}{t}$ (1980's)

•
$$d = 2$$
: $\rho_t^{(n)} \sim \frac{(\log t)^{n-\frac{n(n-1)}{2}}}{t^n}$ (2018)

Outline	Introduction	Algebra
o	0000	●000
ARW's on \mathbb{Z} defined		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = - のへで

• State space: $\Omega = \{0,1\}^{\mathbb{Z}}$, $\eta \in \Omega$ - a configuration

0	0000	0000
ARW's on ${\mathbb Z}$ defined		

• State space: $\Omega = \{0,1\}^{\mathbb{Z}}$, $\eta \in \Omega$ - a configuration

• $\eta(x) = 1$ - a particle at site $x \in \mathbb{Z}$; $\eta(x) = 0$ - site x is empty

0	0000	●000
ARW's on ${\mathbb Z}$ defined		

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

- State space: $\Omega = \{0,1\}^{\mathbb{Z}}$, $\eta \in \Omega$ a configuration
- $\eta(x) = 1$ a particle at site $x \in \mathbb{Z}$; $\eta(x) = 0$ site x is empty
- Model generator:
 - $\partial_t \mathbb{E}[F(\eta_t)] = \mathbb{E}[LF(\eta_t)]$

)	0000	0000
ARW's on ${\mathbb Z}$ defined		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- State space: $\Omega = \{0,1\}^{\mathbb{Z}}$, $\eta \in \Omega$ a configuration
- $\eta(x) = 1$ a particle at site $x \in \mathbb{Z}$; $\eta(x) = 0$ site x is empty
- Model generator:
 - $\partial_t \mathbb{E}[F(\eta_t)] = \mathbb{E}[LF(\eta_t)]$

•
$$L = \sum_{x \in \mathbb{Z}} (\underbrace{\sigma_i}_{acts \ on \ \eta_i, \eta_{i+1}} - I), \quad \sigma = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

)	0000	●000
ARW's on ${\mathbb Z}$ defined		

- State space: $\Omega = \{0,1\}^{\mathbb{Z}}$, $\eta \in \Omega$ a configuration
- $\eta(x) = 1$ a particle at site $x \in \mathbb{Z}$; $\eta(x) = 0$ site x is empty
- Model generator:
 - $\partial_t \mathbb{E}[F(\eta_t)] = \mathbb{E}[LF(\eta_t)]$

•
$$L = \sum_{x \in \mathbb{Z}} (\underbrace{\sigma_i}_{acts \ on \ \eta_i, \eta_{i+1}} - I), \quad \sigma = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Non-closure problem:

 $\partial_t \mathbb{E}[\eta_t(0)] = \Delta \mathbb{E}[\eta_t(0)] - \mathbb{E}[\eta_t(-1)\eta_t(0)] - \mathbb{E}[\eta_t(0)\eta_t(1)]$

Outline	Introduction	Algebra
O	0000	0●00
Hecke algebras		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

• Algebra of two-site generators:

Outline	Introduction	Algebra
O	0000	0●00
Hecke algebras		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

• Algebra of two-site generators:

2
$$\sigma_i^2 = \sigma_i, i \in \mathbb{Z}$$
 (Hecke relation)

Outline	Introduction	Algebra
O	0000	0●00
Hecke algebras		

• Algebra of two-site generators:

2)
$$\sigma_i^2 = \sigma_i, i \in \mathbb{Z}$$
 (Hecke relation)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Outline 0	Introduction 0000	Algebra 0●00
Hecke alge	ebras	
 Algebra σ_iσ_j 	of two-site generators: = $\sigma_j \sigma_i$, $ i - j \neq 1$, $i, j \in \mathbb{Z}$	
(2) $\sigma_i^2 =$	= $\sigma_i, i \in \mathbb{Z}$ (Hecke relation)	
3 σ _i σ _i .	$_{i+1}\sigma_i - \frac{1}{4}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1} - \frac{1}{4}\sigma_{i+1}, \ i \in \mathbb{Z}$ (Braid relation)	

• Claim. Consider a CTMC on $\{0,1\}^{\mathbb{Z}}$ with $L = \sum_{x \in \mathbb{Z}} (\sigma_i - I)_{x \in \mathbb{Z}}$

acts on η_i, η_{i+1}

 $\{\sigma_i\}_{i\in\mathbb{Z}}$ generate Hecke algebra. Assuming reflection symmetry, there are four such chains:

- Mixed coalescing-annihilating RW's ;
- Annihilating RW's with pairwise immigration;
- Ocalescencing-branching RW's;
- Symmetric exclusion process

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Algebraic solution of the non-closure problem.

•
$$\mathbb{1}_{\eta(x)=0}
ightarrow \left(egin{array}{c} 0 \\ 1 \end{array}
ight)$$
, $\mathbb{1}_{\eta(x)=1}
ightarrow \left(egin{array}{c} 1 \\ 0 \end{array}
ight)$, $\mathbf{v} := \left(egin{array}{c} 1 \\ 1 \end{array}
ight)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Algebraic solution of the non-closure problem.

•
$$\mathbb{1}_{\eta(x)=0} \rightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$$
, $\mathbb{1}_{\eta(x)=1} \rightarrow \begin{pmatrix} 1\\0 \end{pmatrix}$, $\mathbf{v} := \begin{pmatrix} 1\\1 \end{pmatrix}$

- **Claim.** For all reaction-diffusion models with Hecke symmetry, there is $w \not\parallel v \in \mathbb{R}^2$:

 - 2 $\sigma w \otimes v = \sigma v \otimes w = \alpha v \otimes v + \beta w \otimes w, \ \alpha, \beta \in \mathbb{R}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Algebraic solution of the non-closure problem.

•
$$\mathbb{1}_{\eta(x)=0} \rightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$$
, $\mathbb{1}_{\eta(x)=1} \rightarrow \begin{pmatrix} 1\\0 \end{pmatrix}$, $\mathbf{v} := \begin{pmatrix} 1\\1 \end{pmatrix}$

- **Claim.** For all reaction-diffusion models with Hecke symmetry, there is $w \not\parallel v \in \mathbb{R}^2$:

•
$$\Phi_t(x_1, x_2) := \mathbb{E}_{\eta_0}(\ldots \otimes v_t(x_1) \left(\bigotimes_{n=x_1}^{x_2-1} w_t(n) \right) \otimes v_t(x_2) \otimes \ldots)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Algebraic solution of the non-closure problem.

•
$$\mathbb{1}_{\eta(x)=0} \to \left(\begin{array}{c} 0\\ 1 \end{array} \right)$$
, $\mathbb{1}_{\eta(x)=1} \to \left(\begin{array}{c} 1\\ 0 \end{array} \right)$, $\mathbf{v} := \left(\begin{array}{c} 1\\ 1 \end{array} \right)$

- **Claim.** For all reaction-diffusion models with Hecke symmetry, there is $w \not\parallel v \in \mathbb{R}^2$:
- $\Phi_t(x_1, x_2) := \mathbb{E}_{\eta_0}(\ldots \otimes v_t(x_1) \left(\bigotimes_{n=x_1}^{x_2-1} w_t(n) \right) \otimes v_t(x_2) \otimes \ldots)$

• $\Phi_t(x_1, x_1) = 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraic solution of the non-closure problem.

•
$$\mathbb{1}_{\eta(x)=0} \to \left(\begin{array}{c} 0\\ 1 \end{array} \right)$$
, $\mathbb{1}_{\eta(x)=1} \to \left(\begin{array}{c} 1\\ 0 \end{array} \right)$, $\mathbf{v} := \left(\begin{array}{c} 1\\ 1 \end{array} \right)$

- **Claim.** For all reaction-diffusion models with Hecke symmetry, there is $w \not\parallel v \in \mathbb{R}^2$:
- $\Phi_t(x_1, x_2) := \mathbb{E}_{\eta_0}(\ldots \otimes v_t(x_1) \left(\bigotimes_{n=x_1}^{x_2-1} w_t(n) \right) \otimes v_t(x_2) \otimes \ldots)$
- $\Phi_t(x_1, x_1) = 1$
- $\partial_t \Phi_t(x_1, x_2) = \alpha \Phi_t(x_1+1, x_2) + \beta \Phi_t(x_1-1, x_2) + \alpha \Phi_t(x_1, x_2-1) + \beta \Phi_t(x_1, x_2+1), x_2 < x_1$

Outline	Introduction	Algebra
O	0000	000●
Conclusions		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Outline	Introduction	Algebra
o	0000	000●
Conclusions		

• All correlation functions can be determined (Pfaffian point process for RD systems)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Outline	Introduction	Algebra
O	0000	000●
Conclusions		

• All correlation functions can be determined (Pfaffian point process for RD systems)

• Related models: real Ginibre matrix model, random Kac polynomials

▲ロト ▲冊 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Outline	Introduction	Algebra
O	0000	000●
Conclusions		

• All correlation functions can be determined (Pfaffian point process for RD systems)

• Related models: real Ginibre matrix model, random Kac polynomials

• Link to integrable systems: *R*-matrices are built from Hecke generators using **Baxterisation**