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How it all started

Idea (Smoluchowski, 1907): use Boltzmann theory to study chemical
kinetics

The simplest models:

1 A + A→ ∅ (annihilation)
2 A + A→ A (coalescence)

Experimental realisation (2000’s): localised excitations in nanowires
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Mean field analysis

ρt - density of reactants

Rate equation:

ρ̇t = − λ︸︷︷︸
Reaction rate

× 1

2
ρ2t︸︷︷︸

Number of reacting pairs in unit volume

Large-t asymptotic: ρt = 2
λt (1 + O(t−1))

Implicit mean field assumption: absence of spatial correlations

So, the probability of finding particles at n disjoint positions is

ρnt
t→∞∼ t−n
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Annihilating Random Walks

Particles perform independent
CT RW’s on Z until they meet

At the moment of collision
particles instantly annihilate.

Correlation functions:

ρ
(n)
t (x1, . . . , xn)

- the probability of finding
particles at x1, . . . , xn at time t

Continuous limit for d = 1
(xc = εx , tc = ε2t): annihilating
BM’s on R
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A bit of history

Contributors: Smoluchowski, Glauber, Bramson, Lebowitz, Griffeath, Doi,

Zeldovich, Ovchinnikov, Peliti, Droz, Lee, Cardy, Kesten, Derrida, Zeitak,

Hakim, Pasquier, ben Avraham, Masser, Ben-Naim, Krapivsky, Connaughton,

R. Rajesh, Warren, R. Sun. . .

Connection to spin chains for d = 1: domain walls in the Glauber
model at T = 0

Results:

Mean field: ρ
(1)
t ∼ t−1 (1907)

d = 1: ρ
(1)
t ∼ t−1/2 (1980’s)

d = 1: ρ
(n)
t ∼ t−

n
2−

n(n−1)
4 (2011)

d > 2: ρ
(1)
t ∼ t−1 (1990’s)

d = 2: ρ
(1)
t ∼ log t

t (1980’s)

d = 2: ρ
(n)
t ∼

(log t)n−
n(n−1)

2

tn (2018)
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ARW’s on Z defined

State space: Ω = {0, 1}Z, η ∈ Ω- a configuration

η(x) = 1 - a particle at site x ∈ Z; η(x) = 0 - site x is empty

Model generator:

∂tE [F (ηt)] = E [LF (ηt)]

L =
∑

x∈Z( σi︸︷︷︸
acts on ηi ,ηi+1

−I ), σ =


0 0 0 1
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1


Non-closure problem:

∂tE[ηt(0)] = ∆E[ηt(0)]− E[ηt(−1)ηt(0)]− E[ηt(0)ηt(1)]
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Hecke algebras

Algebra of two-site generators:
1 σiσj = σjσi , |i − j | 6= 1, i , j ∈ Z

2 σ2
i = σi , i ∈ Z (Hecke relation)

3 σiσi+1σi − 1
4σi = σi+1σiσi+1 − 1

4σi+1, i ∈ Z (Braid relation)

Claim. Consider a CTMC on {0, 1}Z with L =
∑

x∈Z( σi︸︷︷︸
acts on ηi ,ηi+1

−I ),

{σi}i∈Z generate Hecke algebra. Assuming reflection symmetry, there
are four such chains:

1 Mixed coalescing-annihilating RW’s ;
2 Annihilating RW’s with pairwise immigration;
3 Coalescencing-branching RW’s;
4 Symmetric exclusion process
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Algebraic solution of the non-closure problem.

1η(x)=0 →
(

0
1

)
, 1η(x)=1 →

(
1
0

)
, v :=

(
1
1

)

Claim. For all reaction-diffusion models with Hecke symmetry, there is
w ∦ v ∈ R2:

1 σw ⊗ w = 1
2 σw ⊗ v = σv ⊗ w = αv ⊗ v + βw ⊗ w , α, β ∈ R

Φt(x1, x2) := Eη0(. . .⊗ vt(x1)
(
⊗x2−1

n=x1wt(n)
)
⊗ vt(x2)⊗ . . .)

Φt(x1, x1) = 1

∂tΦt(x1, x2) =
αΦt(x1+1, x2)+βΦt(x1−1, x2)+αΦt(x1, x2−1)+βΦt(x1, x2+1), x2<x1
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Conclusions

Hecke symmetry leads to dulaity functions, whose expectations solve
linear equations

All correlation functions can be determined (Pfaffian point process for
RD systems)

Related models: real Ginibre matrix model, random Kac polynomials

Link to integrable systems: R-matrices are built from Hecke generators
using Baxterisation
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